The negation of the statement $q \wedge \left( { \sim p \vee \sim r} \right)$
$ \sim q \vee \left( {p \wedge r} \right)$
$ \sim q \vee \left( {p \wedge \sim r} \right)$
$ \sim q \wedge \left( { \sim p \wedge r} \right)$
$ \sim q \wedge \left( {p \wedge \sim r} \right)$
Let $p$ and $q $ stand for the statement $"2 × 4 = 8" $ and $"4$ divides $7"$ respectively. Then the truth value of following biconditional statements
$(i)$ $p \leftrightarrow q$
$(ii)$ $~ p \leftrightarrow q$
$(iii)$ $~ q \leftrightarrow p$
$(iv)$ $~ p \leftrightarrow ~ q$
The conditional $(p \wedge q) ==> p$ is
$(p\; \wedge \sim q) \wedge (\sim p \vee q)$ is
The Statement that is $TRUE$ among the following is
The statement $\sim(p\leftrightarrow \sim q)$ is :