The negation of the statement $q \wedge \left( { \sim p \vee  \sim r} \right)$

  • A

    $ \sim q \vee \left( {p \wedge r} \right)$

  • B

    $ \sim q \vee \left( {p \wedge  \sim r} \right)$

  • C

    $ \sim q \wedge \left( { \sim p \wedge r} \right)$

  • D

    $ \sim q \wedge \left( {p \wedge  \sim r} \right)$

Similar Questions

Let $p$ and $q $ stand for the statement $"2 × 4 = 8" $ and $"4$ divides $7"$ respectively. Then the truth value of following biconditional statements

$(i)$ $p \leftrightarrow  q$ 

$(ii)$ $~ p \leftrightarrow q$

$(iii)$ $~ q \leftrightarrow p$

$(iv)$ $~ p \leftrightarrow ~ q$

The conditional $(p \wedge q) ==> p$ is

$(p\; \wedge \sim q) \wedge (\sim p \vee q)$ is

The Statement that is $TRUE$ among the following is

  • [AIEEE 2012]

The statement $\sim(p\leftrightarrow \sim q)$ is :

  • [JEE MAIN 2014]